Journal of Organometallic Chemistry, 137 (1977) C25–C27 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Preliminary communication

VANADAPHOSPHA-ALKANES AND -CYCLOALKANES PREPARED BY PHOTOREACTION OF CARBONYL-VANADIUM COMPOUNDS WITH TETRAPHENYLDIPHOSPHINES

DIETER REHDER

Institut für Anorganische und Angewandte Chemie der Universität Hamburg, Martin-Luther-King-Platz 6, D-2000 Hamburg-13 (F.R.G.) (Received June 30th, 1977)

Summary

Reaction between $Ph_2 PPPh_2$ and $[Et_4N][V(CO)_6]$ yields *cis*- $[Et_4N]_2$ -[(μ -Ph_2PPPh_2)₂ {V(CO)₄}₂], which may have a cyclic structure, and $[Et_4N]_2$ -[(μ -Ph_2PPPh_2){V(CO)₅}₂]. An "open-chain", monometallic species [η^5 -CpV(CO)₃ Ph_2PPPh_2] is formed with [η^5 -CpV(CO)₄]. Proposed structures are based on IR, ³¹P, and ⁵¹V NMR spectra.

We recently described our findings on the UV-induced reaction of $[Et_4N]$ -[V(CO)₆] and $[\eta^5$ -CpV(CO)₄] with mono- and oligo-tertiary phosphines, emphasizing the preparative potential [1] and features of the semi-empirical interpretation of ⁵¹V NMR spectra in terms of the electronic correlations in the metal—ligand sphere [2, 3]. We now report initial results on the photolytic introduction of tetraphenyldiphosphine (Ph₂ PPPh₂) into carbonylvanadium compounds. New structural principles are shown to arise with this ligand.

On UV irradiation of THF solutions containing $[Et_4N][V(CO)_6]$ and Ph_2PPPh_2 (for experimental details see Ref. 1), a dark-red substance is precipitated from which an air-sensitive, red powder (I) can be isolated. According to analytical and spectroscopic data, I is a *cis*-disubstituted complex *cis*- $[Et_4N]_2[(\mu-Ph_2PPPh_2)_2 \{V(CO)_4\}_2]$ (Found: C, 64.6; H, 7.9; N, 2.3; P, 8.8; V, 7.9. C₃₆H₄₀NO₄P₂V calcd.: C, 65.16; H, 6.08; N, 2.11; P, 9.34; V, 7.63%), possibly having the cyclic structure of a 1,4-divanada-2,3,5,6-tetraphosphacyclohexane. The filtrate from the above mixture, on treatment with O₂-free water and subsequent reprecipitation from THF/methylcyclohexane, yields a yellow, air-sensitive powder (II). Data of II are consistent with its formulation as a 1,4-divanada-2,3-diphosphabutane, hence $[Et_4N]_2[(\mu-Ph_2PPPh_2){V(CO)_5}_2]$ (Found: C, 59.3; H, 6.2; N, 2.6; P, 6.2; V, 9.8. C₂₅H₃₀NOPV calcd.: C, 59.18; H, 5.96; N, 2.76; P, 6.10; V, 10.24%).

Spectroscopic parameters are summarized in Table 1. Proposed structures are

SPECTROSCOPIC DATA FOR TETRA	APHENYLDIPHOSP	HINE-SUBSTITU	ted carbonyl-
VANADIUM COMPOUNDS			· · · · · ·

	$\nu(C\equiv O)^{\alpha}$ (cm ⁻¹)	δ(⁵¹ V) (%) ^δ	¹ J(³¹ P ⁵¹ V) (Hz)	δ(³¹ Ρ) ^C (ppm)
$cis-[(\mu-Ph_2PPPh_2)_2 \{V(CO)_4\}_2]$ (I)	1896, 1833, 1800, 1774	-0.178 t	235	+124
$[(\mu-Ph_2PPPh_2){V(CO)_{5}_{2}}(II)$	1967, 1860, 1828	-0.186 d	205	+55, +28
$[\eta^{5}-CpV(CO)_{3}Ph_{2}PPPh_{2}]$ (III)	1958, 1865(sh), 1858	-0.141 d	155	-16.8 ^d , +71

^a Ca. 0.02 *M* in MeCN/THF (2/1). ^b Ca. 0.2 *M* in MeCN/THF (2/1) relative to an external VOCl₃ standard (negative values indicate upfield shifts). ^c Ca. 0.15 *M* in MeCN/CD₃CN/THF (2/1/1) relative to an external H_3PO_4 (85% in D₂O) standard at room temperature; positive shift values (broad lines, indicating coordinated P-functions) are downfield H_3PO_4 . ^d Unligated Ph₂P.

shown in Fig. 1. IR and NMR features support the proposed structures (cf. refs. 1, 3, and 4). The "normal" ⁵¹V chemical shift value and vanadium—phosphorus coupling constant for I suggest a cyclic structure as represented by the sixmembered ring without substantial ring strains or angle distortions. For II, two broad ³¹P resonances corresponding with phosphorus functions directly bonded to the quadrupolar ⁵¹V nucleus, reflect non-equivalent PPh₂ groups, possibly originating from different orientations of the two phosphorus sites with respect to the equatorial CO groups, as indicated in Fig. 1, structure II.

The UV-induced reaction between $Ph_2 PPPh_2$ and $[\eta^5 - CpV(CO)_4]$ at room temperature gives almost exclusively a monosubstituted product $[\eta^5 - CpV(CO)_3 - Ph_2 PPPh_2]$ (III; for spectra see Table 1). If irradiation is carried out at elevated

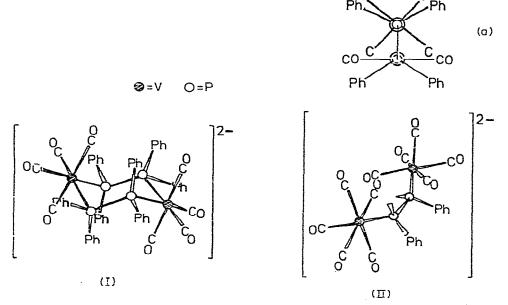


Fig. 1. Proposed structures for $cis_{[(\mu-Ph_2PPPh_2)_2} \{V(CO)_4\}_2]^{2-}$ (I) and $[(\mu-Ph_2PPPh_2) \{V(CO)_5\}_2]^{2-}$ (II). (a) Compound II viewed "from the top" (along the V—P-axis); upper outer circle, V(1); upper inner circle, P(1); lower outer circle P(2); lower inner circle V(2).

TABLE 1

temperatures, a second product is formed in small amounts which is indicated by IR and ⁵¹V NMR results (lowest ν (C=O) 1788 cm⁻¹, δ (V) -0.124 ppm) to be cis- $[\eta^5$ -CpV(CO)₂ (Ph₂PPPh₂)₂] (IV). IV is, however, thermally unstable and so could not be isolated. III, which may be considered as a 1-yanada-2.3-diphosphapropane, is obtained as a dark red oil by passage of the reaction mixture through a silicagel column. A sharp ³¹P NMR signal at -16.8 ppm, corresponding with unligated PPh_2 , and a broad signal at +71 ppm, assigned to ligated PPh_2 , indicate an open-chain structure for III with non-bridging phosphine. III therefore exhibits structural similarity with the isoelectronic tetracarbonyltetraphenyldiphosphinerhenium iodide described by Hieber and Opavsky [5]. The 51 V chemical shift and C=O stretching frequencies are similar to those observed for strong π -accepting phosphines such as $P(OR)_3$ [3, 6]. The strong π -interaction between tetraphenyldiphosphine and vanadium is probably due to enhanced π -delocalization of vanadium d electrons into vacant d functions of the P atoms (or accepting MO orbitals localized on the phosphine) by d - d interaction between ligated and unligated phosphorus. This "three-centre d_{π} -interaction" would also be responsible for the non-observed P-P coupling.

While tetraphenyldiphosphine essentially behaves like a strong monotertiary phosphine in its reactions with $[n^5 - \text{CpV}(\text{CO})_4]$, its ligand behaviour towards the anionic $[V(\text{CO})_6]^-$ ressembles that observed in substitution reactions with iron and nickel carbonyl [7]. Unlike ditertiary phosphines of the type Ph₂P(CH₂)_nPPh₂ (n = 1-4), which give rise to monometallic biligate chelated species [1], Ph₂ PPPh₂ clearly prefers to form binuclear bridged structures.

We acknowledge support of this work by the Deutsche Forschungsgemeinschaft.

References

- 1 D. Rehder, L. Dahlenburg and I. Müller, J. Organometal. Chem., 122 (1976) 53; I. Müller and D. Rehder, ibid., in press.
- 2 D. Rehder and J. Schmidt, J. Inorg. Nucl. Chem., 36 (1974) 333; D. Rehder, W.L. Dorn and J. Schmidt, Transition Met. Chem., 1 (1976) 233; D. Rehder, J. Magn. Reson., 25 (1977) 177.
- 3 D. Rehder, W.L. Dom and J. Schmidt, Transition Met. Chem., 1 (1976) 73.
- 4 J.E. Ellis and R. Faltynek, J. Organometal. Chem., 93 (1975) 205.
- 5 W. Hieber and W. Opavsky, Chem. Ber., 101 (1968) 2966.
- 6 W. Strohmeier and F.-J. Müller, Chem. Ber., 100 (1967) 2812.
- 7 K. Issleib and M. Keil, Z. Anorg. Allgem. Chem., 333 (1964) 10.